Detoxification and bioregulation are critical for long-term waterborne arsenic exposure risk assessment for tilapia.
نویسندگان
چکیده
Long-term metal exposure risk assessment for aquatic organism is a challenge because the chronic toxicity of chemical is not only determined by the amount of accumulated chemical but also affected by the ability of biological regulation or detoxification of biota. We quantified the arsenic (As) detoxification ability of tilapia and developed a biologically based growth toxicity modeling algorithm by integrating the process of detoxification and active regulations (i.e., the balance between accumulated dose, tissue damage and recovery, and the extent of induced toxic effect) for a life span ecological risk prediction. Results showed that detoxification rate (k (dex)) increased with increasing of waterborne As when the accumulated metal exceeded the internal threshold level of 19.1 μg g( - 1). The k (dex) values were comparable to or even higher than the rates of physiological loss and growth dilution in higher exposure conditions. Model predictions obtained from the proposed growth toxicity model were consistent with the measured growth data. The growth toxicity model was also used to illustrate the health condition and growth trajectories of tilapia from birth to natural death under different exposure scenarios. Results showed that temporal trends of health rates and growth trajectories of exposed fish in different treatments decreased with increasing time and waterborne As, revealing concentration-specific patterns. We suggested that the detoxification rate is critical and should be involved in the risk assessments framework. Our proposed modeling algorithm well characterizes the internal regulation activities and biological response of tilapia under long-term metal stresses.
منابع مشابه
Bioavailability links mode of action can improve the long-term field risk assessment for tilapia exposed to arsenic.
The objective of this paper was to develop a mechanistic-based framework to explicitly incorporate the factors controlling the bioavailability, toxicodynamics and mode of action to enhance predictive ability of arsenic (As) toxicity to protect the health of farmed tilapia Oreochromis mossambicus. We linked the biotic ligand model and damage assessment model to develop a toxicokinetic model for ...
متن کاملToxicokinetics/toxicodynamics with damage feedback improves risk assessment for tilapia and freshwater clam exposed to arsenic.
It has been proposed that irreversible responses of organisms exposed to contaminants are due to a systems-level feedback. Here we tested this hypothesis by reanalyzing the published data on toxicokinetics and survival probability based on a systems-level threshold damage model (TDM) incorporating with a positive damage feedback to explore the steady-state response and dynamic behavior of damag...
متن کاملArsenic cancer risk posed to human health from tilapia consumption in Taiwan.
Ingested inorganic arsenic is strongly associated with a wide spectrum of adverse health outcomes. We propose a bioaccumulation and the Weibull model-based epidemiological framework to accurately estimate the reference arsenic intake guideline for tilapia consumption and tilapia-cultured water arsenic concentration based on bioaccumulations of tilapia and gender/age/cancer-specific epidemiologi...
متن کاملArsenic Health Risk Assessment through Groundwater Drinking (Case Study: Qaleeh Shahin Agricultural Region, Kermanshah Province, Iran)
Groundwater resources make up an important portion of potable and irrigation water in Iran, making it important to monitor toxic elements of pollutants in these resources in order to protect the inhabitants' health. The current study has been carried out to assess the health risks, caused by trivalent inorganic arsenic-polluted groundwater in Qaleeh Shahin Plain, an important agricultural regio...
متن کاملArsenic Health Risk Assessment through Groundwater Drinking (Case Study: Qaleeh Shahin Agricultural Region, Kermanshah Province, Iran)
Groundwater resources make up an important portion of potable and irrigation water in Iran, making it important to monitor toxic elements of pollutants in these resources in order to protect the inhabitants' health. The current study has been carried out to assess the health risks, caused by trivalent inorganic arsenic-polluted groundwater in Qaleeh Shahin Plain, an important agricultural regio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental monitoring and assessment
دوره 184 1 شماره
صفحات -
تاریخ انتشار 2012